• 0 342 317 19 51 - 0 342 317 19 52

Makineyle öğrenme yıllardır kullanılan bir yöntem olmasına rağmen, iki yeni yeni trend makineyle öğrenmenin yaygın bir şekilde kullanılmasına yol açmıştır: çok büyük miktarlarda eğitim verisi ile GPU hesaplama ile elde edilen güçlü ve verimli paralel hesaplama. GPU’lar, çok daha büyük eğitim setleri kullanarak bu derin nöral ağları çok daha kısa sürelerde ve çok daha az veri merkezi altyapısı kullanarak eğitmek için kullanılmaktadır. GPU’lar aynı zamanda, çok daha fazla veri hacmi ve daha az güç ve altyapı destekleyerek, bulut içinde sınıflandırma ve tahmin yapmak için bu eğitilmiş makineyle öğrenme modellerini çalıştırmak için kullanılmaktadır.

Makineyle öğrenme için GPU’ları kullanmaya ilk başlayanlar arasında en büyük web ve sosyal medya şirketlerinin yanı sıra, veri bilimi ve makineyle öğrenme alanında çalışan üst düzey araştırma kuruluşları bulunmaktadır. Binlerce hesaplama çekirdeği ve tek başına çalıştırılan CPU’lar (Merkezi İşlem Birimi) ile karşılaştırıldığında 10 ile 100 kat uygulama performansı sunan GPU’lar, veri bilimcilerin büyük verilerin işlenmesinde tercih ettikleri işlemci olmuştur.

GPU’lar ile önceden kaydedilen konuşmalar veya multimedya içerikleri çok daha hızlı bir şekilde yazıya geçirebilmektedir. Carnegie Mellon Üniversitesi’nden Profesör Ian Lane yürüttüğü çalışmalarında CPU uygulaması ile karşılaştırıldığında, GPU’ların 33 kata kadar daha hızlı tanıma yaptığını ortaya koymuştur.Devamı

Video 1

Video 2

23 Ocak 2018 tarihinde güncellenmiştir.